World Economic Outlook according to the IMF until 2015 => Data 2010

Created 2011-02-03 10:38:48
Updated 2011-10-13 20:06:10

General government net lending/borrowing 2015

#Country/Territoty198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015
1Iran0000000000-817.3-1638.7-1905.3-6752.3-5726.6-6351-3847-6830-21962-2410.135368.546154.544930.5914908.3123538.1528305.81520.87670841.02-334.019-54868.1313900.5598992.8198467.2195074.17118879.9387235.69
2Korea, South0000000000000009973122071176443592707207681124516184169331862018525213934093017359428.66916191.3124838.7731188.0737902.6440419.8642612.69
3Iraq00000000000000000000000002991.8510238.248887.55-3445.24-16893.82-13959.7-8914.164231.4314420.9830027.0340496.27
4Uzbekistan0000000000000.008-0.763-3.638-11.635-43.975-21.209-53.66-64.366-81.199-63.208-140.6067.20573.746198.9761082.731482.424031.821539.911330.81701.861746.332345.953254.953795.1
5Congo0000000000-33.437-95.793-108.732-94.785-130.654-86.931132.19148.59-78.9-80.4225.886130.203-10.2516.59289.49469.938663.947377.7621241.64221.5611475.371962.572100.482003.731929.81756.56
6Gabon00000000000000000000427.72149.643137.845292.748286.526398.007460.429480.646763.537388.447402.52519.208567.647578.443681.904690.883
7Angola00000000000000000000-5.633-5.605-30.728-66.584-6.278196.05538.178525.143563.578-515.497209.435300.718364.82628.885694.011535.957
8Sao Tome and Principe00000000000000000000315.111-87.502-81.965-95.975-176.286445.284-212.9652361.39374.46-587.833-542.785159.818-415.852-421.337-448.637517.507
9Mongolia0-0.425-0.44-0.514-0.564-0.643-1.645-1.819-2.01-1.765-1.416-1.832-5.166-26.16-29.078-32.364-50.796-75.505-116.641-112.856-71.254-60.232-73.432-61.864-39.36173.261305.485130.788-296.4-328.614-175.899-436.289-242.645-49.667592.026501.615
10Chad000000000000000-23.413-23.775-22.325-14.754-43.156-52.667-50.225-51.95-76.885-37.25330.44244.276320.711456.505187.846136.425372.254402.714429.221385.092409.255
11Norway16.82817.19715.6126.40834.40653.7732.98527.93817.03312.41716.160.838-14.768-11.9982.3530.38164.98985.43237.86874.327227.722204.67141.134116.238194.154293.542399.149402.608484.682234.709281.667299.462329.384356.961368.694380.79
12Algeria000000000017.6632.778.076-70.384-27.73411.762100.54881.472-101.228-61.54400.037158.07652.638256.083323.3961030.641185.52573.609999.386-541.509-1186.97-1132.71-512.798-302.856-78.93187.038
13Kazakhstan000000000000000000000053.766132.868144.189437.141736.474599.988173.284-236.44-534.121-412.337-282.97-86.31548.541181.552
14Saudi Arabia0000000000000000000-15.00543.58422.145-23.40844.275116.823258.613328.843226.535632.52-33.38330.365110.394126.674116.072132.136161.645
15United Arab Emirates0000000000000000000-17.3668.712-12.379-18.843-9.1712.60670.225116.037127.631170.128-52.05613.94174.378103.389123.589135.04151.087
16Paraguay1.55-18.634-11.295-20.482-32.272-23.4529.3680.28211.72286.19245.51818.681-107.42383.475360.743120.514-9.062-129.928-21.727-693.588-1126.77-164.184-858.308170.105760.26398.501506.421951.9022179.35377.64419.829-76.637-199.492-222.109-54.99877.965
17Sweden-31.914-28.643-43.999-38.452-25.503-33.546-3.45635.83739.28442.68348.676-1.187-138.27-175.703-152.185-132.415-61.441-31.39624.63325.5784.40339.062-34.31-29.07614.93555.44470.144116.3477.746-24.549-70.569-49.2625.82578.58162.42671.816
18Iceland0.2160.3230.665-1.3871.999-2.001-6.526-1.786-5.212-14.032-12.106-2.922-7.806-18.438-20.635-13.398-7.728-0.108-2.3777.24811.579-5.298-20.819-23.7550.2850.2273.83770.691-7.982-189.753-147.764-96.971-19.58624.20136.12358.858
19China00-7.1-9.6-10.4-4.1-18.7-25.1-33.4-37.4-36.7-48-61.2-64.9-126.2-122.3-105.5-137.502-237.694-331.847-324.197-307.293-355.325-332.47-238.042-257.099-146.253239.443-121.731-1015.2-1125.89-850.19-631.428-463.91-235.52951.746
20Jamaica000000000001.7452.8933.5054.54.053-10.274-18.714-19.369-14.224-5.523-16.696-29.801-31.922-30.347-25.263-35.51-35.925-65.71-109.956-87.901-43.359-19.193-1.34717.89339.79
21South Africa00000000000000000000-14.563-11.84-13.037-23.67-17.250.01914.15723.921-10.695-128.091-158.997-136.721-104.431-58.291-18.37532.118
22Libya00000000000.110.8-0.012-0.589-0.2910.4431.507-0.303-0.3410.982.647-0.1472.7883.2196.04217.48323.9429.10934.0887.0812.95915.17717.24721.06525.22429.451
23Hong Kong00002.4132.855.89612.50216.06611.0623.96822.50921.96819.210.8-3.31725.90986.866-23.2419.952-7.833-63.331-61.688-40.128-4.03813.96461.152123.651.4525.91726.54933.86254.70673.118108.41217.149
24Azerbaijan000000000000000000000.0180-0.022-0.1260.0820.3040.1180.6517.5962.345.826.6888.2539.28412.51213.207
25Kuwait0000000000-1.704-4.737-2.889-1.139-0.674-0.1511.0941.580.5441.393.7443.1532.2412.4683.89110.21710.45712.9687.9355.5385.7666.5597.198.73710.52612.684
26Australia000000003.4715.6031.191-9.389-18.232-19.073-15.719-10.482-4.850.362.0728.16411.6875.7937.28313.31218.53323.54220.34517.515-6.35-51.63-62.409-36.203-9.1491.2496.23212.564
27Singapore00000000008.3568.30510.42517.35520.21120.80919.69227.03413.12815.73516.4896.2775.563.3475.7212.20312.62827.32713.961-2.2617.3394.7336.1796.9478.0658.977
28Botswana0.004-0.015-0.0260.070.1670.3580.5080.5190.7040.5940.7310.7240.8350.8780.3650.3041.060.98-0.8250.8012.314-0.044-1.328-1.111-0.0383.3176.6244.474-2.793-9.856-7.504-5.242-1.0462.114.196.701
29Brunei5.1257.0775.7072.1223.2083.2150.4640.278-0.228-0.375-0.145-0.096-0.745-1.153-2.067-2.007-0.884-1.233-2.15-1.7880.7860.2870.7861.021.2632.8574.0072.7766.0640.5622.1062.6063.0973.373.5873.822
30East Timor000000000000000000000.006-0.0010.0010.0060.1430.3390.5671.1311.9131.3241.311.3951.4711.1091.4631.314
Source: International Monetary Fund 2010 (IMF).

Table | Charts | Flash Charts
| BCA | BCA_NGDPD | FLIBOR6 | GGR | GGR_NGDP | GGSB | GGSB_NPGDP | GGX | GGX_NGDP | GGXCNL | GGXCNL_NGDP | GGXONLB | GGXONLB_NGDP | GGXWDG | GGXWDG_NGDP | GGXWDN | GGXWDN_NGDP | Employment | Population | Unemployment rate | NGAP_NPGDP | NGDP | NGDP_D | NGDP_FY | NGDP_R | NGDP_RPCH | NGDPD | NGDPDPC | NGDPPC | NGDPRPC | NGSD_NGDP | NID_NGDP | PCPI | PCPIE | PCPIEPCH | PCPIPCH | PPPEX | PPPGDP | PPPPC | PPPSH | Growth Rate | Chinese
Net lending (+)/ borrowing (?) is calculated as revenue minus total expenditure. This is a core GFS balance that measures the extent to which general government is either putting financial resources at the disposal of other sectors in the economy and nonr Billions National currency.

References

Give us feedback (0)

No any user feedback.
Email Web

Please copy the string:
String to copy.

Asia Home™ > Store > World Economic Outlook according to the IMF until 2015 => Data 2010 | General Sales Conditions | Returns and refunding | Privacy Policy | FAQ
  

Want to come? | Call us 7/700 33 467 790 487 (Phone)

Popup Window    Close
Patience please...